
  

  

 



  

  
 

Mathematical Theory of Personal Data Value: calculating the value of an individual's personal 
data input to the product development process  

Crafting the data model  

I’m mapping out a model to value personal data in product development, featuring Claude 
Shannon's 1948 Mathematical Theory of Communication. The focus is on information entropy 
and mutual information to gauge data's impact on product outcomes and consumer preferences.  

Mapping the model  

I'm integrating mutual information, entropy, data acquisition costs, and channel characteristics to 
evaluate how personal data influences product development outcomes, aiming to reduce 
uncertainty and boost product value.  

Assessing data utility  

I'm emphasizing the data's rare or unexpected quality, using negative log probability for 
information content, and considering relevance weighting to evaluate its impact on product 
development outcomes.  

Synthesizing the data model  

I'm mapping out the model by combining relevance weighting with mutual information, integrating 
over the data distribution, and assessing the channel's noise impact to determine the effective 
value of personal data.  

Below is one way to develop a model that “prices” an individual’s personal data in the product 
development process using ideas from Claude Shannon’s Mathematical Theory of  
Communication. The approach is to treat personal data as a source of information that, when 
“transmitted” to the product development team, reduces uncertainty about customer needs or 
preferences. In other words, the “value” of the data is related to how much it improves decision‐
making—quantified as a reduction in uncertainty. One natural way to measure this is via mutual 
information.  

In the following sections we describe the model step by step.  

  

  

  

  



  
  

  
  

1. Setting Up the Framework  
1.1. Define the Random Variables  

● XXX: Represents the set of personal data collected from an individual. In practice, XXX 
might be multi-dimensional (e.g., demographics, behavior, preferences).  

● YYY: Represents the product development outcomes that we care about. For instance, 
YYY might denote “customer satisfaction,” “purchase likelihood,” or any measure of how 
well the product aligns with customer needs.  

1.2. The Communication Analogy  

● Source: The individual’s personal data XXX acts like a source generating a message.  
● Channel: The product development process is analogous to a communication channel 

that “receives” this information and uses it to reduce uncertainty about YYY.  
● Receiver/Decoder: The decision-making process in product development that interprets 

the data and adapts the product accordingly.  

  

2. Using Shannon’s Information Measures  
2.1. Information Content  

In Shannon’s theory, the information content (or “surprisal”) of a particular outcome xxx is given 
by  

I(x)=−log 2P(x)I(x) = -\log_2 P(x)I(x)=−log2 P(x)  

This means that rare (unexpected) pieces of data carry more “bits” of information.  

2.2. Entropy of the Outcome  

The uncertainty (entropy) about the product development outcome YYY before receiving any 
data is  

H(Y)=−∑yP(y)log 2P(y)H(Y) = - \sum_{y} P(y) \log_2 P(y)H(Y)=−y∑ P(y)log2 P(y) 

This represents our baseline uncertainty about YYY.  



  

  
2.3. Conditional Entropy  

After obtaining personal data XXX, the remaining uncertainty about YYY is  

H(Y∣X)=−∑x,yP(x,y)log 2P(y∣x)H(Y|X) = - \sum_{x,y} P(x,y) \log_2  
P(y|x)H(Y∣X)=−x,y∑ P(x,y)log2 P(y∣x)  

This quantifies the uncertainty in YYY after the personal data has been “transmitted” through the 
product development process.  

2.4. Mutual Information  

The key quantity is the mutual information between XXX and YYY:  

I(X;Y)=H(Y)−H(Y∣X)I(X; Y) = H(Y) - H(Y|X)I(X;Y)=H(Y)−H(Y∣X)  

This mutual information represents the average reduction in uncertainty about YYY when the 
personal data XXX is known. In our model, it is interpreted as the value of the personal data in 
reducing uncertainty in product development outcomes.  

  

3. Modeling the Value of Personal Data  
3.1. Basic Model  

We define the value VVV of an individual’s personal data as:  

V=I(X;Y)=H(Y)−H(Y∣X)V = I(X; Y) = H(Y) - H(Y|X)V=I(X;Y)=H(Y)−H(Y∣X)  

● H(Y)H(Y)H(Y): Total uncertainty in outcomes without data.  
● H(Y∣X)H(Y|X)H(Y∣X): Uncertainty remaining after the data is used.  

A higher I(X;Y)I(X; Y)I(X;Y) means that the data is more informative (i.e., it reduces more 
uncertainty), which in turn implies higher value in shaping product development.  

3.2. Incorporating Data Relevance  

Not all personal data is equally useful. We can introduce a relevance weighting factor 
r(x)r(x)r(x) that accounts for how pertinent a particular piece of data xxx is to the product 
development process. One might modify the contribution of each data point as:  

V(x)=r(x)×[−log 2P(x)]V(x) = r(x) \times [-\log_2 P(x)]V(x)=r(x)×[−log2 P(x)]  



  
  

  
Then, the overall value could be aggregated (for example, by expectation):  

V=∑xP(x) r(x) (−log 2P(x))V = \sum_{x} P(x) \, r(x) \, \bigl(-\log_2  
P(x)\bigr)V=x∑ P(x)r(x)(−log2 P(x))  

Alternatively, one could define a weighted mutual information measure, where the joint 
distribution P(x,y)P(x,y)P(x,y) is adjusted to reflect relevance.  

3.3. Considering the “Channel”  

In Shannon’s theory, noise in the channel can degrade the message. Analogously, if the product 
development process (the “channel”) misinterprets the personal data or if there is additional 
“noise” (e.g., data errors, misalignment with the product strategy), then the effective value of the 
data is lower. You could model this by introducing a fidelity factor η\etaη (with 0≤η≤10 \leq \eta 
\leq 10≤η≤1) so that:  

V=η I(X;Y)V = \eta \, I(X; Y)V=ηI(X;Y)  

Here, η\etaη represents the effectiveness with which the organization translates personal data 
into actionable insights. If the process is perfect (η=1 \eta = 1η=1), the full mutual information is 
realized; if not, only a fraction is used.  

  

4. Example Application  
Suppose a company is deciding between two product features, and the outcome YYY is binary 
(e.g., feature A leads to high customer satisfaction vs. low satisfaction). The baseline entropy is:  

H(Y)=−[P(Y=1)log 2P(Y=1)+P(Y=0)log 2P(Y=0)]H(Y) = -\bigl[P(Y=1)\log_2 P(Y=1) +  
P(Y=0)\log_2 P(Y=0)\bigr]H(Y)=−[P(Y=1)log2 P(Y=1)+P(Y=0)log2 P(Y=0)]  

If the personal data XXX (say, detailed customer behavior data) reduces the uncertainty to 
H(Y∣X)H(Y|X)H(Y∣X), then the value of the data is:  

V=I(X;Y)=H(Y)−H(Y∣X)V = I(X; Y) = H(Y) - H(Y|X)V=I(X;Y)=H(Y)−H(Y∣X)  

A higher value of VVV indicates that personal data significantly reduces uncertainty about 
customer satisfaction, guiding the company in making a better product decision.  

  



  

  
5. Summary of the Model  

1. Identify Variables:  
○ XXX: Personal data.  

○ YYY: Product development outcome.  
2. Quantify Uncertainty:  

○ H(Y)H(Y)H(Y): Entropy before receiving data.  
○ H(Y∣X)H(Y|X)H(Y∣X): Conditional entropy after receiving data.  

3. Compute Value via Mutual Information:  
○ V=I(X;Y)=H(Y)−H(Y∣X)V = I(X; Y) = H(Y) - H(Y|X)V=I(X;Y)=H(Y)−H(Y∣X).  

4. Adjust for Relevance and Noise:  
○ Optionally include relevance r(x)r(x)r(x) and channel fidelity η\etaη.  

This model frames the value of an individual’s personal data in product development as the 
amount of uncertainty reduced by having that data—a perspective directly inspired by 
Shannon’s theory of communication.  

  

6. Final Thoughts  
By grounding the model in Shannon’s information measures, we can quantitatively assess how 
much an individual’s personal data contributes to better decision-making in product 
development. This approach helps in both understanding the value of data and in guiding 
investments in data collection and processing infrastructure.  

  


